非歐幾何平行線相交的規(guī)則:黎曼幾何中的一條基本規(guī)定是:在同一平面內(nèi)任何兩條直線都有公共點(diǎn)(交點(diǎn))。在黎曼幾何學(xué)中不承認(rèn)平行線的存在,它的另一條公設(shè)講:直線可以無(wú)限延長(zhǎng),但總的長(zhǎng)度是有限的。黎曼幾何的模型是一個(gè)經(jīng)過(guò)適當(dāng)“改進(jìn)”的球面。
黎曼幾何是德國(guó)數(shù)學(xué)家黎曼創(chuàng)立的。他在1851年所作的一篇論文《論幾何學(xué)作為基礎(chǔ)的假設(shè)》中明確的提出另一種幾何學(xué)的存在,開(kāi)創(chuàng)了幾何學(xué)的一片新的廣闊領(lǐng)域。