<sup id="m40ya"></sup>
  • 
    
  • <kbd id="m40ya"></kbd>
    <samp id="m40ya"></samp>
    <ul id="m40ya"></ul>
  • 更多精彩內(nèi)容,歡迎關(guān)注:

    視頻號(hào)
    視頻號(hào)

    抖音
    抖音

    快手
    快手

    微博
    微博

    當(dāng)前位置:首頁(yè) 科技百科 堆排序法

    堆排序法

    文檔

    堆排序法

    堆排序(Heapsort)是指利用堆這種數(shù)據(jù)結(jié)構(gòu)所設(shè)計(jì)的一種排序算法。堆積是一個(gè)近似完全二叉樹的結(jié)構(gòu),并同時(shí)滿足堆積的性質(zhì):即子結(jié)點(diǎn)的鍵值或索引總是小于(或者大于)它的父節(jié)點(diǎn)。堆排序可以說是一種利用堆的概念來排序的選擇排序。
    推薦度:
    導(dǎo)讀堆排序(Heapsort)是指利用堆這種數(shù)據(jù)結(jié)構(gòu)所設(shè)計(jì)的一種排序算法。堆積是一個(gè)近似完全二叉樹的結(jié)構(gòu),并同時(shí)滿足堆積的性質(zhì):即子結(jié)點(diǎn)的鍵值或索引總是小于(或者大于)它的父節(jié)點(diǎn)。堆排序可以說是一種利用堆的概念來排序的選擇排序。
    .example-btn{color:#fff;background-color:#5cb85c;border-color:#4cae4c}.example-btn:hover{color:#fff;background-color:#47a447;border-color:#398439}.example-btn:active{background-image:none}div.example{width:98%;color:#000;background-color:#f6f4f0;background-color:#d0e69c;background-color:#dcecb5;background-color:#e5eecc;margin:0 0 5px 0;padding:5px;border:1px solid #d4d4d4;background-image:-webkit-linear-gradient(#fff,#e5eecc 100px);background-image:linear-gradient(#fff,#e5eecc 100px)}div.example_code{line-height:1.4em;width:98%;background-color:#fff;padding:5px;border:1px solid #d4d4d4;font-size:110%;font-family:Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;word-break:break-all;word-wrap:break-word}div.example_result{background-color:#fff;padding:4px;border:1px solid #d4d4d4;width:98%}div.code{width:98%;border:1px solid #d4d4d4;background-color:#f6f4f0;color:#444;padding:5px;margin:0}div.code div{font-size:110%}div.code div,div.code p,div.example_code p{font-family:"courier new"}pre{margin:15px auto;font:12px/20px Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;white-space:pre-wrap;word-break:break-all;word-wrap:break-word;border:1px solid #ddd;border-left-width:4px;padding:10px 15px}

    排序算法是《數(shù)據(jù)結(jié)構(gòu)與算法》中最基本的算法之一。排序算法可以分為內(nèi)部排序和外部排序,內(nèi)部排序是數(shù)據(jù)記錄在內(nèi)存中進(jìn)行排序,而外部排序是因排序的數(shù)據(jù)很大,一次不能容納全部的排序記錄,在排序過程中需要訪問外存。常見的內(nèi)部排序算法有:插入排序、希爾排序、選擇排序、冒泡排序、歸并排序、快速排序、堆排序、基數(shù)排序等。以下是堆排序算法:

    堆排序(Heapsort)是指利用堆這種數(shù)據(jù)結(jié)構(gòu)所設(shè)計(jì)的一種排序算法。堆積是一個(gè)近似完全二叉樹的結(jié)構(gòu),并同時(shí)滿足堆積的性質(zhì):即子結(jié)點(diǎn)的鍵值或索引總是小于(或者大于)它的父節(jié)點(diǎn)。堆排序可以說是一種利用堆的概念來排序的選擇排序。分為兩種方法:

    大頂堆:每個(gè)節(jié)點(diǎn)的值都大于或等于其子節(jié)點(diǎn)的值,在堆排序算法中用于升序排列;小頂堆:每個(gè)節(jié)點(diǎn)的值都小于或等于其子節(jié)點(diǎn)的值,在堆排序算法中用于降序排列;

    堆排序的平均時(shí)間復(fù)雜度為 Ο(nlogn)。

    1. 算法步驟

    創(chuàng)建一個(gè)堆 H[0……n-1];

    把堆首(最大值)和堆尾互換;

    把堆的尺寸縮小 1,并調(diào)用 shift_down(0),目的是把新的數(shù)組頂端數(shù)據(jù)調(diào)整到相應(yīng)位置;

    重復(fù)步驟 2,直到堆的尺寸為 1。

    2. 動(dòng)圖演示

    代碼實(shí)現(xiàn)JavaScript 實(shí)例 var len; ? ?// 因?yàn)槁暶鞯亩鄠€(gè)函數(shù)都需要數(shù)據(jù)長(zhǎng)度,所以把len設(shè)置成為全局變量function buildMaxHeap(arr) { ? // 建立大頂堆? ? len = arr.length;? ? for (var i = Math.floor(len/2); i >= 0; i--) {? ? ? ? heapify(arr, i);? ? }}function heapify(arr, i) { ? ? // 堆調(diào)整? ? var left = 2 * i + 1,? ? ? ? right = 2 * i + 2,? ? ? ? largest = i;? ? if (left < len && arr[left] > arr[largest]) {? ? ? ? largest = left;? ? }? ? if (right < len && arr[right] > arr[largest]) {? ? ? ? largest = right;? ? }? ? if (largest != i) {? ? ? ? swap(arr, i, largest);? ? ? ? heapify(arr, largest);? ? }}function swap(arr, i, j) {? ? var temp = arr[i];? ? arr[i] = arr[j];? ? arr[j] = temp;}function heapSort(arr) {? ? buildMaxHeap(arr);? ? for (var i = arr.length-1; i > 0; i--) {? ? ? ? swap(arr, 0, i);? ? ? ? len--;? ? ? ? heapify(arr, 0);? ? }? ? return arr;}Python實(shí)例 def buildMaxHeap(arr):? ? import math? ? for i in range(math.floor(len(arr)/2),-1,-1):? ? ? ? heapify(arr,i)def heapify(arr, i):? ? left = 2*i+1? ? right = 2*i+2? ? largest = i? ? if left < arrLen and arr[left] > arr[largest]:? ? ? ? largest = left? ? if right < arrLen and arr[right] > arr[largest]:? ? ? ? largest = right? ? if largest != i:? ? ? ? swap(arr, i, largest)? ? ? ? heapify(arr, largest)def swap(arr, i, j):? ? arr[i], arr[j] = arr[j], arr[i]def heapSort(arr):? ? global arrLen? ? arrLen = len(arr)? ? buildMaxHeap(arr)? ? for i in range(len(arr)-1,0,-1):? ? ? ? swap(arr,0,i)? ? ? ? arrLen -=1? ? ? ? heapify(arr, 0)? ? return arrGo實(shí)例 func heapSort(arr []int) []int {? ? ? ? arrLen := len(arr)? ? ? ? buildMaxHeap(arr, arrLen)? ? ? ? for i := arrLen - 1; i >= 0; i-- {? ? ? ? ? ? ? ? swap(arr, 0, i)? ? ? ? ? ? ? ? arrLen -= 1? ? ? ? ? ? ? ? heapify(arr, 0, arrLen)? ? ? ? }? ? ? ? return arr}func buildMaxHeap(arr []int, arrLen int) {? ? ? ? for i := arrLen / 2; i >= 0; i-- {? ? ? ? ? ? ? ? heapify(arr, i, arrLen)? ? ? ? }}func heapify(arr []int, i, arrLen int) {? ? ? ? left := 2*i + 1? ? ? ? right := 2*i + 2? ? ? ? largest := i? ? ? ? if left < arrLen && arr[left] > arr[largest] {? ? ? ? ? ? ? ? largest = left? ? ? ? }? ? ? ? if right < arrLen && arr[right] > arr[largest] {? ? ? ? ? ? ? ? largest = right? ? ? ? }? ? ? ? if largest != i {? ? ? ? ? ? ? ? swap(arr, i, largest)? ? ? ? ? ? ? ? heapify(arr, largest, arrLen)? ? ? ? }}func swap(arr []int, i, j int) {? ? ? ? arr[i], arr[j] = arr[j], arr[i]}Java實(shí)例 public class HeapSort implements IArraySort {? ? @Override? ? public int[] sort(int[] sourceArray) throws Exception {? ? ? ? // 對(duì) arr 進(jìn)行拷貝,不改變參數(shù)內(nèi)容? ? ? ? int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);? ? ? ? int len = arr.length;? ? ? ? buildMaxHeap(arr, len);? ? ? ? for (int i = len - 1; i > 0; i--) {? ? ? ? ? ? swap(arr, 0, i);? ? ? ? ? ? len--;? ? ? ? ? ? heapify(arr, 0, len);? ? ? ? }? ? ? ? return arr;? ? }? ? private void buildMaxHeap(int[] arr, int len) {? ? ? ? for (int i = (int) Math.floor(len / 2); i >= 0; i--) {? ? ? ? ? ? heapify(arr, i, len);? ? ? ? }? ? }? ? private void heapify(int[] arr, int i, int len) {? ? ? ? int left = 2 * i + 1;? ? ? ? int right = 2 * i + 2;? ? ? ? int largest = i;? ? ? ? if (left < len && arr[left] > arr[largest]) {? ? ? ? ? ? largest = left;? ? ? ? }? ? ? ? if (right < len && arr[right] > arr[largest]) {? ? ? ? ? ? largest = right;? ? ? ? }? ? ? ? if (largest != i) {? ? ? ? ? ? swap(arr, i, largest);? ? ? ? ? ? heapify(arr, largest, len);? ? ? ? }? ? }? ? private void swap(int[] arr, int i, int j) {? ? ? ? int temp = arr[i];? ? ? ? arr[i] = arr[j];? ? ? ? arr[j] = temp;? ? }}PHP 實(shí)例 function buildMaxHeap(&$arr){? ? global $len;? ? for ($i = floor($len/2); $i >= 0; $i--) {? ? ? ? heapify($arr, $i);? ? }}function heapify(&$arr, $i){? ? global $len;? ? $left = 2 * $i + 1;? ? $right = 2 * $i + 2;? ? $largest = $i;? ? if ($left < $len && $arr[$left] > $arr[$largest]) {? ? ? ? $largest = $left;? ? }? ? if ($right < $len && $arr[$right] > $arr[$largest]) {? ? ? ? $largest = $right;? ? }? ? if ($largest != $i) {? ? ? ? swap($arr, $i, $largest);? ? ? ? heapify($arr, $largest);? ? }}function swap(&$arr, $i, $j){? ? $temp = $arr[$i];? ? $arr[$i] = $arr[$j];? ? $arr[$j] = $temp;}function heapSort($arr) {? ? global $len;? ? $len = count($arr);? ? buildMaxHeap($arr);? ? for ($i = count($arr) - 1; $i > 0; $i--) {? ? ? ? swap($arr, 0, $i);? ? ? ? $len--;? ? ? ? heapify($arr, 0);? ? }? ? return $arr;}C實(shí)例 #include #include void swap(int *a, int *b) {? ? int temp = *b;? ? *b = *a;? ? *a = temp;}void max_heapify(int arr[], int start, int end) {? ? // 建立父節(jié)點(diǎn)指標(biāo)和子節(jié)點(diǎn)指標(biāo)? ? int dad = start;? ? int son = dad * 2 + 1;? ? while (son <= end) { // 若子節(jié)點(diǎn)指標(biāo)在範(fàn)圍內(nèi)才做比較? ? ? ? if (son + 1 <= end && arr[son] < arr[son + 1]) // 先比較兩個(gè)子節(jié)點(diǎn)大小,選擇最大的? ? ? ? ? ? son++;? ? ? ? if (arr[dad] > arr[son]) //如果父節(jié)點(diǎn)大於子節(jié)點(diǎn)代表調(diào)整完畢,直接跳出函數(shù)? ? ? ? ? ? return;? ? ? ? else { // 否則交換父子內(nèi)容再繼續(xù)子節(jié)點(diǎn)和孫節(jié)點(diǎn)比較? ? ? ? ? ? swap(&arr[dad], &arr[son]);? ? ? ? ? ? dad = son;? ? ? ? ? ? son = dad * 2 + 1;? ? ? ? }? ? }}void heap_sort(int arr[], int len) {? ? int i;? ? // 初始化,i從最後一個(gè)父節(jié)點(diǎn)開始調(diào)整? ? for (i = len / 2 - 1; i >= 0; i--)? ? ? ? max_heapify(arr, i, len - 1);? ? // 先將第一個(gè)元素和已排好元素前一位做交換,再重新調(diào)整,直到排序完畢? ? for (i = len - 1; i > 0; i--) {? ? ? ? swap(&arr[0], &arr[i]);? ? ? ? max_heapify(arr, 0, i - 1);? ? }}int main() {? ? int arr[] = { 3, 5, 3, 0, 8, 6, 1, 5, 8, 6, 2, 4, 9, 4, 7, 0, 1, 8, 9, 7, 3, 1, 2, 5, 9, 7, 4, 0, 2, 6 };? ? int len = (int) sizeof(arr) / sizeof(*arr);? ? heap_sort(arr, len);? ? int i;? ? for (i = 0; i < len; i++)? ? ? ? printf("%d ", arr[i]);? ? printf(" ");? ? return 0;}C++實(shí)例 #include #include using namespace std;void max_heapify(int arr[], int start, int end) {? ? // 建立父節(jié)點(diǎn)指標(biāo)和子節(jié)點(diǎn)指標(biāo)? ? int dad = start;? ? int son = dad * 2 + 1;? ? while (son <= end) { // 若子節(jié)點(diǎn)指標(biāo)在範(fàn)圍內(nèi)才做比較? ? ? ? if (son + 1 <= end && arr[son] < arr[son + 1]) // 先比較兩個(gè)子節(jié)點(diǎn)大小,選擇最大的? ? ? ? ? ? son++;? ? ? ? if (arr[dad] > arr[son]) // 如果父節(jié)點(diǎn)大於子節(jié)點(diǎn)代表調(diào)整完畢,直接跳出函數(shù)? ? ? ? ? ? return;? ? ? ? else { // 否則交換父子內(nèi)容再繼續(xù)子節(jié)點(diǎn)和孫節(jié)點(diǎn)比較? ? ? ? ? ? swap(arr[dad], arr[son]);? ? ? ? ? ? dad = son;? ? ? ? ? ? son = dad * 2 + 1;? ? ? ? }? ? }}void heap_sort(int arr[], int len) {? ? // 初始化,i從最後一個(gè)父節(jié)點(diǎn)開始調(diào)整? ? for (int i = len / 2 - 1; i >= 0; i--)? ? ? ? max_heapify(arr, i, len - 1);? ? // 先將第一個(gè)元素和已經(jīng)排好的元素前一位做交換,再?gòu)男抡{(diào)整(剛調(diào)整的元素之前的元素),直到排序完畢? ? for (int i = len - 1; i > 0; i--) {? ? ? ? swap(arr[0], arr[i]);? ? ? ? max_heapify(arr, 0, i - 1);? ? }}int main() {? ? int arr[] = { 3, 5, 3, 0, 8, 6, 1, 5, 8, 6, 2, 4, 9, 4, 7, 0, 1, 8, 9, 7, 3, 1, 2, 5, 9, 7, 4, 0, 2, 6 };? ? int len = (int) sizeof(arr) / sizeof(*arr);? ? heap_sort(arr, len);? ? for (int i = 0; i < len; i++)? ? ? ? cout << arr[i] << ' ';? ? cout << endl;? ? return 0;}

    參考文章:

    https://github.com/hustcc/JS-Sorting-Algorithm/blob/master/7.heapSort.md

    https://zh.wikipedia.org/wiki/%E5%A0%86%E6%8E%92%E5%BA%8F

    以下是熱心網(wǎng)友對(duì)堆排序算法的補(bǔ)充,僅供參考:

    熱心網(wǎng)友提供的補(bǔ)充1:

    上方又沒些 C# 的堆排序,艾孜爾江補(bǔ)充如下:

    /// 
    /// 堆排序
    /// 
    /// 待排序數(shù)組
    static void HeapSort(int[] arr)
    {
        int vCount = arr.Length;
        int[] tempKey = new int[vCount + 1];
        // 元素索引從1開始
        for (int i = 0; i < vCount; i++)
        {
            tempKey[i + 1] = arr[i];
        }
        // 初始數(shù)據(jù)建堆(從含最后一個(gè)結(jié)點(diǎn)的子樹開始構(gòu)建,依次向前,形成整個(gè)二叉堆)
        for (int i = vCount / 2; i >= 1; i--)
        {
            Restore(tempKey, i, vCount);
        }
        // 不斷輸出堆頂元素、重構(gòu)堆,進(jìn)行排序
        for (int i = vCount; i > 1; i--)
        {
            int temp = tempKey[i];
            tempKey[i] = tempKey[1];
            tempKey[1] = temp;
            Restore(tempKey, 1, i - 1);
        }
        //排序結(jié)果
        for (int i = 0; i < vCount; i++)
        {
            arr[i] = tempKey[i + 1];
        }
    }
    /// 
    /// 二叉堆的重構(gòu)(針對(duì)于已構(gòu)建好的二叉堆首尾互換之后的重構(gòu))
    /// 
    /// 
    /// 根結(jié)點(diǎn)j
    /// 結(jié)點(diǎn)數(shù)
    static void Restore(int[] arr, int rootNode, int nodeCount)
    {
        while (rootNode <= nodeCount / 2) // 保證根結(jié)點(diǎn)有子樹
        {
            //找出左右兒子的最大值
            int m = (2 * rootNode + 1 <= nodeCount && arr[2 * rootNode + 1] > arr[2 * rootNode]) ? 2 * rootNode + 1 : 2 * rootNode;
            if (arr[m] > arr[rootNode])
            {
                int temp = arr[m];
                arr[m] = arr[rootNode];
                arr[rootNode] = temp;
                rootNode = m;
            }
            else
            {
                break;
            }
        }
    }

    熱心網(wǎng)友提供的補(bǔ)充2:

    堆排序是不穩(wěn)定的排序!

    既然如此,每次構(gòu)建大頂堆時(shí),在 父節(jié)點(diǎn)、左子節(jié)點(diǎn)、右子節(jié)點(diǎn)取三者中最大者作為父節(jié)點(diǎn)就行。我們追尋的只是最終排序后的結(jié)果,所以可以簡(jiǎn)化其中的步驟。

    我將個(gè)人寫的 Java 代碼核心放在下方,有興趣的同學(xué)可以一起討論下:

    public int[] sort(int a[]) {
        int len = a.length - 1;    
        for (int i = len; i > 0; i--) {
            maxHeap(a, i);        
            //交換 跟節(jié)點(diǎn)root 與 最后一個(gè)子節(jié)點(diǎn)i 的位置        
            swap(a, 0, i);        
            //i--無序數(shù)組尺寸減少了 
        }  
        return a;
    }
    
    /**構(gòu)建一個(gè)大頂堆(完全二叉樹 ) 
    * 從  最后一個(gè)非葉子節(jié)點(diǎn)  開始,若父節(jié)點(diǎn)小于子節(jié)點(diǎn),則互換他們兩的位置。然后依次從右至左,從下到上進(jìn)行! 
    * 最后一個(gè)非葉子節(jié)點(diǎn),它的葉子節(jié)點(diǎn) 必定包括了最后一個(gè)(葉子)節(jié)點(diǎn),所以 最后一個(gè)非葉子節(jié)點(diǎn)是 a[(n+1)/2-1] 
     
    * @param a 
    * @param lastIndex 這個(gè)數(shù)組的最后一個(gè)元素 
    */
    static void maxHeap(int a[], int lastIndex) {
        for (int i = (lastIndex + 1) / 2 - 1; i >= 0; i--) {
           //反正 堆排序不穩(wěn)定,先比較父與左子,大則交換;與右子同理。(不care 左子與右子位置是否變了!) 
            if (i * 2 + 1 <= lastIndex && a[i] < a[i * 2 + 1]) {
                swap(a, i, i * 2 + 1);        
            }    
            if (i * 2 + 2 <= lastIndex && a[i] < a[i * 2 + 2]) {
                swap(a, i, i * 2 + 2);        
            }
        }
    }
    
    private void swap(int[] arr, int i, int j) {
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }
    
    以上為堆排序算法詳細(xì)介紹,插入排序、希爾排序、選擇排序、冒泡排序、歸并排序、快速排序、堆排序、基數(shù)排序等排序算法各有優(yōu)缺點(diǎn),用一張圖概括:

    關(guān)于時(shí)間復(fù)雜度

    平方階 (O(n2)) 排序 各類簡(jiǎn)單排序:直接插入、直接選擇和冒泡排序。

    線性對(duì)數(shù)階 (O(nlog2n)) 排序 快速排序、堆排序和歸并排序;

    O(n1+§)) 排序,§ 是介于 0 和 1 之間的常數(shù)。 希爾排序

    線性階 (O(n)) 排序 基數(shù)排序,此外還有桶、箱排序。

    關(guān)于穩(wěn)定性

    穩(wěn)定的排序算法:冒泡排序、插入排序、歸并排序和基數(shù)排序。

    不是穩(wěn)定的排序算法:選擇排序、快速排序、希爾排序、堆排序。

    名詞解釋:

    n:數(shù)據(jù)規(guī)模

    k:"桶"的個(gè)數(shù)

    In-place:占用常數(shù)內(nèi)存,不占用額外內(nèi)存

    Out-place:占用額外內(nèi)存

    穩(wěn)定性:排序后 2 個(gè)相等鍵值的順序和排序之前它們的順序相同

    文檔

    堆排序法

    堆排序(Heapsort)是指利用堆這種數(shù)據(jù)結(jié)構(gòu)所設(shè)計(jì)的一種排序算法。堆積是一個(gè)近似完全二叉樹的結(jié)構(gòu),并同時(shí)滿足堆積的性質(zhì):即子結(jié)點(diǎn)的鍵值或索引總是小于(或者大于)它的父節(jié)點(diǎn)。堆排序可以說是一種利用堆的概念來排序的選擇排序。
    推薦度:
    為你推薦
    資訊專欄
    熱門視頻
    相關(guān)推薦
    快速排序算法c 歸并排序算法的分治方法 希爾排序c語(yǔ)言實(shí)現(xiàn) 選擇排序過程 基數(shù)排序的基數(shù)什么意思 冒泡排序例子 桶排序原理 計(jì)數(shù)排序python實(shí)現(xiàn) 堆排序算法操作 快速排序算法例題 歸并排序的過程舉例 希爾排序的基本原理 選擇排序算法的思路 基數(shù)排序過程 冒泡排序算法流程圖 c語(yǔ)言桶排序 堆是什么排序 快速排序法怎么排 歸并排序算法c++實(shí)現(xiàn) 希爾排序算法代碼 計(jì)數(shù)排序基本原理 桶排序算法原理 冒泡排序怎么優(yōu)化 基數(shù)排序是什么 選擇排序算法代碼 希爾排序過程圖解 歸并排序定義 java快速排序算法代碼 堆排序的初始堆 計(jì)數(shù)排序java 排序算法桶排 冒泡排序圖解算法 基數(shù)排序算法c語(yǔ)言 選擇排序圖解 希爾排序流程圖 外部排序歸并算法 快速排序算法思路 堆排序怎么建立初始堆 計(jì)數(shù)排序python 桶排序代碼
    Top 国产精品麻豆高清在线观看| 国产精品无码素人福利不卡| 99视频精品全部在线播放| 亚洲国产精品人人做人人爽| 中文字幕无码精品亚洲资源网久久| 国产精品成熟老女人视频| 精品国产亚洲男女在线线电影| 国产精品毛片AV久久66| 久久久久久国产精品免费无码| 日本道免费精品一区二区| 欲帝精品福利视频导航| 麻豆国产VA免费精品高清在线 | 国产真实乱子伦精品视| 精品乱码久久久久久久| 久久久久成人精品| 国产小视频国产精品| 国产精品亚洲综合专区片高清久久久| 国产av影片麻豆精品传媒| 国产精品久久国产精品99盘| 日韩一区精品视频一区二区| 日韩精品一区二区三区大桥未久| 久久国产香蕉一区精品 | 久久精品人妻一区二区三区| 国产免费久久精品| 成人国产精品2021| 成人国产精品一区二区网站公司 | 精品国产系列在线观看| 国产精品va一级二级三级| 久久精品毛片免费观看| 久久香蕉超碰97国产精品| 久久精品一品道久久精品9| 久久精品国产影库免费看| 最新国产精品精品视频| 中文字幕精品无码亚洲字| 久久久久一级精品亚洲国产成人综合AV区| 国产天堂亚洲精品| 精品天海翼一区二区| jizzjizz国产精品久久| 亚洲国产精品自产在线播放 | 久久精品国产99国产精品澳门| 亚洲精品无码不卡在线播放HE|